How do you solve the integral of ln(x)

This will use the process of integration by parts.

First, notice that ln(x)=ln(x)*1.

So, the integral of ln(x) is the integral of ln(x)1. The process of integration by parts is;  int(vdu/dx)dx=vu - int(dv/dx*u)dx.

Set ln(x)=v, 1=du/dx, so int(ln(x)*1)dx = ln(x)- int(1/xx)dx = xln(x)-int(1)dx = xln(x)-x+constant.

And you're done!

YP
Answered by Yaniv P. Maths tutor

4925 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

dy/dx of 2x (3x - 1)^5


Given an integral of a function parametrized with respect to an integer index n, prove a given recursive identity and use this to evaluate the integral for a specific value of n.


Simple binomial: (1+0.5x)^4


Shower-cleaner liquid is sold in spray bottles. The volume of liquid in a bottle may be modelled by a normal distribution with mean 955 ml and a standard deviation of 5 ml. Determine the probability that the volume in a particular bottle is:


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning