How do you differentiate 2^x?

We can differentiate this implicitly by writing the question as:y = 2Then we take the log of both sides:ln(y) = ln(2x)Using the rules of logartithms this can be written as:ln(y) = x ln(2)Now we can differentiate this easily:y-1 dy/dx = ln(2)We can now re-arrange to get:dy/dx = y ln(2)And finally we can substitute y to get our answer:dy/dx = 2ln(2)So we have shown that the derrivative of 2x is simply 2x multiplied by ln(2)

AC
Answered by Alex C. Maths tutor

13750 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Explain briefly the Normal Distribution


Let f(x) and g(x) be two odd functions defined for all real values of x. Given that s(x)=f(x)+g(x), prove that s(x) is also an odd function.


Derive double angle formulas from addition formulae


Given that the increase in the volume of a cube is given by dV/dt = t^3 + 5 (cm^3/s). The volume of the cube is initially at 5 cm^3. Find the volume of the cube at time t = 4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning