How do you differentiate 2^x?

We can differentiate this implicitly by writing the question as:y = 2Then we take the log of both sides:ln(y) = ln(2x)Using the rules of logartithms this can be written as:ln(y) = x ln(2)Now we can differentiate this easily:y-1 dy/dx = ln(2)We can now re-arrange to get:dy/dx = y ln(2)And finally we can substitute y to get our answer:dy/dx = 2ln(2)So we have shown that the derrivative of 2x is simply 2x multiplied by ln(2)

AC
Answered by Alex C. Maths tutor

13315 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Where do the kinematics equations (SUVAT) come from?


Differentiate x^2 + y^2 with respect to x


Find the two real roots of the equation x^4 -5=4x^2 Give the roots in an exact form.


Solve x^3+2*x^2-5*x-6=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences