A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.

At first glance, this looks quite tricky, as usually when we are asked to find dy/dx, we have one equation, but here we have 2.So in this case, we need to use the statement that dy/dx = (dy/dt) * (dt/dx)Then, we just need to find dy/dt and dy/dx.dy/dt = -2/t^2dx/dt = -4, and therefore dt/dx = -1/4So, (dy/dt)(dt/dx) = (-2/t^2)(-1/4)= 1/2t^2.

WM
Answered by Wesley M. Maths tutor

10156 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If I am given a line, how do I find a line that is parallel to it? What about perpendicular?


The equation of a circle is x^2-6x+y^2+4y=12. Complete the square to find the centre and radius of the circle.


a) Express 4(cosec^2(2x)) - (cosec^2(x)) in terms of sin(x) and cos (x) and hence b) show that 4(cosec^2(2x)) - (cosec^2(x)) = sec^2(x)


Evaluate the integral between 5 and 3 for xe^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences