A sequence is defined by the recurrence relation u(n+1) = 1/3 u(n) + 10 with u(3) = 6 . Find the value of u(4) and the limit of the sequence.

A sequence is defined by the recurrence relation un+1 = 1/3 un + 10  with u3 = 6 . Find the value of u4 and the limit of the sequence.

To find the value of u4 we replace un by u3 in the equation and then calculate un+1

u4 = 1/3 u3 + 10

u4 = 1/3 x 6 + 10

u4 = 2 + 10

u4 = 12

To find the limit of the series we have to find for which value un+1 is equal to un .

Let's call this value x . Then we have:

x = 1/3 x + 10

We can subtract 1/3 x on both sides to get:

x - 1/3 x = 10

2/3 x = 10

Now we multiply by 3 and then divide by 2:

x = 10 x 3 / 2

x = 15

The limit of the sequence is 15.

DS
Answered by David-Ruben S. Physics tutor

10095 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

I don't understand acceleration and how something can accelerate without speeding up.


Circut is arranged in a loop, with resistor (5 ohm), power source(2V), resistor (3 ohm), and another power source (3V) connected subsequently. What is the voltage on 5ohm resistor?


What is terminal velocity?


There is an oil tank that has a rectangular base of dimensions 2.4 m by 1.5 m. The tank is filled with oil of density 850 kg / m3 to a depth of 1.5 m. What is the mass of the oil?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning