What is the integral of (cos(x))^2?

cos(2x) = 2cos2(x)-1 by the double angle formula.

Rearrange to give cos2(x) = (cos(2x)+1)/2

Integrating this gives sin(2x)/4 + 1/4x + c 

MC
Answered by Max C. Maths tutor

5443 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The General Form of the equation of a circle is x^2 + y^2 + 2gx +2fy + c = 0. Find the centre of the circle and the radius of the circle in terms of g f and c.


Use the double angle formulae and the identity cos(A+B)≡cos(A)cos(B)−sin(A)sin(B) to obtain an expression for cos 3x in terms of cos x only


A curve has equation y= e^x -5x, Find the coordinates of the stationary point and show it is a minimum point


(i) Prove sin(θ)/cos(θ) + cos(θ)/sin(θ) = 2cosec(2θ) , (ii) draw draph of y = 2cosec(2θ) for 0<θ< 360°, (iii) solve to 1 d.p. : sin(θ)/cos(θ) + cos(θ)/sin(θ) = 3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences