Find the integral of 3x^2 + 4x + 9 with respect to x.

We must first remember that to integrate, we must increase the power by 1 and divide by this new power.

Therefore, to integrate 3x^2 + 4x + 9, we take the first term, 3x^2. Using the above method, we find that the integral of this is (3x^3)/3 = x^3.

Taking the second term, 4x, we find the integral to be (4x^2)/2 = 2x^3.

Taking the final term, 9, we find the integral to be (9x)/1 = 9x.

As the question gives an indefinite integral (an integral without any limits) we must also remember to add a constant, which we can call C.

Therefore, the integral of 3x^2 + 4x + 9 with respect to x is 2x^2 + x^3 + 9x + C.

DJ
Answered by Dylan J. Maths tutor

9511 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the curve y=sin(x^2) + e^(x) at the point x= sqrt(pi)


Using methods of substitution solve the following simultaneous equations: y - 2x - 1 = 0 and 4x^2 + y^2 - 25 = 0


If a particle of mass m is launched vertically upwards from the ground with velocity u m/s, how long will it take to return to the ground in terms of m, u and g?


Given that: y = 5x^3 + 7x + 3. What is dy/dx? What is d^2y/dx^2?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning