How to differentiate using the Product Rule

The Product Rule is used when differentiating two functions that are being multiplied together. It can be used by multiplying each function by the derivative of the other and adding.  

If y=uv then

dy/dx= udv/dx + vdu/dx  

To illustrate this rule look at the example below: 

y=x2e3x

u=x2  v=e3x      du/dx= 2x    dv/dx= 3e3x

Therefore dy/dx= (x2)(3e3x)+ (e3x)(2x)  

               dy/dx= 3x2e3x + 2xe3x 

CM
Answered by Callum M. Maths tutor

4644 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using methods of substitution solve the following simultaneous equations: y - 2x - 1 = 0 and 4x^2 + y^2 - 25 = 0


Find the equation of the tangent for x = 2cos (2y +pi)


Prove algebraically that the sum of the squares of two consecutive multiples of 5 is not a multiple of 10.


The equation f(x) =x^3 + 3x is drawn on a graph between x = 0 and x = 2. The graph is then rotated around the x axis by 2π to form a solid. What is the volume of this solid?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences