Find the area of the region, R, bounded by the curve y=x^(-2/3), the line x = 1 and the x axis . In addition, find the volume of revolution of this region when rotated 2 pi radians around the x axis.

As we are looking to find the area under a curve we can use integration. The area under a curve with equation y = f(x), bounded by the lines x = a and x = b and the x axis can be expressed as:A = integral (from a to b) f(x) dxThus, the area of the region, R, can be expressed as:R = integral (from 1 to infinity) x^(-2/3) dxR = [3x^(1/3)] (from 1 to infinity)R = (3infinity(1/3))-(31^(1/3)) = infinity - 3 = infinityR = infinityTherefore the region has infinite area, Considering now the volume of revolution, again using integration:The volume of revolution 2pi radians around the x axis of the same region described above can be expressed:V = pi * integral (from a to b) f(x)^2 dxThus, for the curve in question:V = pi * integral (from 1 to infinity) [x^(-2/3)]^2 dx = pi * integral (from 1 to infinity) x^(4/3) dxV = [-3x^(-1/3)] (from 1 to infinity) = (-3infinity^(-1/3))-(-31^(-1/3)) = 0 - (-3) = 3V = 3This interesting problem shows that a region can have infinity area but its revolution can have fininte volume 

HF
Answered by Henri F. Maths tutor

8673 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Derive 2*x^(3/2)+x+4


Determine the tangent to the curve y = sin^2(x)/x at the point, x = pi/2. Leave your answer in the form ax+by+c=0


Consider the functions f(x) = −x^3 + 2x^2 + 3x and g(x) = −x^3 + 3x^2 − x + 3. (a) Find df/dx (x) and hence show that f(x) has turning points at when x = 2 /3 ± √ 13/ 3 . [5] (b) Find the points where f(x) and g(x) intersect. [4]


Using the Trapezium rule with four ordinates (three strips), estimate to 4 significant figures the integral from 1 to 4 of (x^3+12)/4sqrt(x). Calculate the exact value of this integral, comparing it with your estimate. How could the estimate be improved?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning