What is solution by substitution?

Simultaneous equations - Solution by substitution

As the variables (x & y) are the same in both equations, we can substitute from one equation into the other. This will give an equation with just one variable, which can easily be solved.

Example:

Equation 1   3y = 6x - 3

Equation 2   4y = 5x + 2

Make y the subject of equation 1, then substitute into equation 2:

·         Equation 1, divide both sides by 3 gives    y = 2x – 1

·         Equation 2, substitute for y from above gives  4(2x – 1) = 5x + 2

·         Multiply out brackets         8x – 4 = 5x + 2

·         Simplify and solve             3x = 6  therefore   x = 2

Substitute this value back into either of the original equations to solve for y:

Equation 1    3y = 6 (2) -3  therefore y = 3.

Key tip: Instead you could have made x the subject of an equation, and it can be either equation. Before you begin, think carefully about which variable will be easiest to make the subject of which equation.

 

AM
Answered by Antonia M. Maths tutor

5770 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In a right-angled triangle calculate the length of the hypotenuse when the side lengths at 5cm and 7cm. Leave your answer as a surd.


There are 3 red beads and 1 blue bead in a jar. A bead is taken at random from the jar. what is the probability that the bead is blue?


Using Algebra show that part of the line 3x + 4y = 0 is a diameter of the circle with equation (x^2) + (y^2) = 25


John has £385 he wants to give to Charlie, Ben and Sarah. He gives them the money in the ratio 1:2:4 respectively. How much money does each person get?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences