What is solution by substitution?

Simultaneous equations - Solution by substitution

As the variables (x & y) are the same in both equations, we can substitute from one equation into the other. This will give an equation with just one variable, which can easily be solved.

Example:

Equation 1   3y = 6x - 3

Equation 2   4y = 5x + 2

Make y the subject of equation 1, then substitute into equation 2:

·         Equation 1, divide both sides by 3 gives    y = 2x – 1

·         Equation 2, substitute for y from above gives  4(2x – 1) = 5x + 2

·         Multiply out brackets         8x – 4 = 5x + 2

·         Simplify and solve             3x = 6  therefore   x = 2

Substitute this value back into either of the original equations to solve for y:

Equation 1    3y = 6 (2) -3  therefore y = 3.

Key tip: Instead you could have made x the subject of an equation, and it can be either equation. Before you begin, think carefully about which variable will be easiest to make the subject of which equation.

 

AM
Answered by Antonia M. Maths tutor

6334 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The area of a parallelogram is given by the equation 2(x)^2+7x-3=0, where x is the length of the base. Find: (a) The equation of the parallelogram in the form a(x+m)^2+n=0. (b) The value of x.


There are 495 coins in a bottle. 1/3 of the coins are £1 coins. 124 of the coins are 50p coins. The rest of the coins are 20p coins. Work out the total value of the 495 coins


Show that (sqrt(3) + sqrt(75))^{2} = 108


Line A passes through point Q(2,3). Line B is parallel to line A and has the equation 2y-3x=4. What is the equation of line A?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning