What is solution by substitution?

Simultaneous equations - Solution by substitution

As the variables (x & y) are the same in both equations, we can substitute from one equation into the other. This will give an equation with just one variable, which can easily be solved.

Example:

Equation 1   3y = 6x - 3

Equation 2   4y = 5x + 2

Make y the subject of equation 1, then substitute into equation 2:

·         Equation 1, divide both sides by 3 gives    y = 2x – 1

·         Equation 2, substitute for y from above gives  4(2x – 1) = 5x + 2

·         Multiply out brackets         8x – 4 = 5x + 2

·         Simplify and solve             3x = 6  therefore   x = 2

Substitute this value back into either of the original equations to solve for y:

Equation 1    3y = 6 (2) -3  therefore y = 3.

Key tip: Instead you could have made x the subject of an equation, and it can be either equation. Before you begin, think carefully about which variable will be easiest to make the subject of which equation.

 

AM
Answered by Antonia M. Maths tutor

6329 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The point P has coordinates (3,4). The Point Q has the coordinates (a,b). A line perpendicular to PQ is given by the equation 3x+2y=7. Find an expression for b in terms of a.


Express 5/(2-sqrt(3)) in the form a + b*sqrt(3)


A straight line passes through the points (-2, 4) and (1, 10). What is (a) the gradient of the line, (b) the y-intercept of the line and (c) the equation of the line?


Solve these simultaneous equations and find the values of x and y. Equation 1: 2x + y = 7 Equation 2: 2x - y - 4 = 4 – x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning