How do I find the equation of the normal line given a point on the curve?

The normal line to a curve at a particular point is the line through that point and perpendicular to the tangent.

A simple trick to remembering how to find the normal gradient, n, is that the slope of any line perpendicular to a line that has a gradient, m, is just the negative reciprocal, -1/m.

Example:

Find the normal gradient to the curve y=2x3 +3x+7 at the point (1,1).

So firstly, let’s recap how to calculate the gradient of the tangent line:

By differentiating y=2x3 +3x+7 , we find

dy/dx = 6x2 +3

Then, by substituting in our point, at x=1 we yield dy/dx=9. This is the tangent gradient of the curve (m=9).

Finally we substitute this into our formula for calculating the normal gradient n=-1/m.

Therefore n=-1/9.

 

Now, let’s try another example which demonstrates how we use the normal gradient to find an equation for the normal line.

We will use the formula (y-y0) = n(x-x0), where (x0,y0) is a given point.

Example:

Consider a curve y=x5+3x2 +2. Find the equation of the normal to the curve at the point (-1,2). Leave your answer in the form y=mx+c.

By differentiating the curve, we have dy/dx = 5x4 +6x.

To find the gradient of the tangent line we substitute in x=-1, which yields

dy/dx = 5(-1)4 +6(-1)

                = 5-6

                =-1 = m

Therefore, we know that the normal gradient is n=-1/m

So n=1

 

Finally, we substitute this into our formula for the normal line (y-y0) = n(x-x0):

In our example, (x0, y0) = (-1,2)

 

So   y-2 = 1(x+1)

And my rearranging, we find y = x+3.

JM
Answered by Joy M. Maths tutor

67010 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle of mass m moves from rest a time t=0, under the action of a variable force f(t) = A*t*exp(-B*t), where A,B are positive constants. Find the speed of the particle for large t, expressing the answer in terms of m, A, and B.


The probability distribution of the random variable X is given by the formula P(X = x) = 0.09+0.01x^2 for x= 1,2,3,4,5 ). Find E(X).


How can we calculate the derivative of function f(x)= (x+2)/(x-1)?


How do you sketch r=theta? I don't really understand polar coordinates.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences