How can I find the area under the graph of y = f(x) between x = a and x = b?

You can find the area under this graph by evaluating the definite integral of y = f(x) with respect to x between x = a and x = b

Please note: An area below the x-axis has a negative value

Example:

Find the area under the graph of y = x^2 between x = 3 and x = 6

 

Step 1: Integrate x^2 to give 1/3x^3

Step 2: Find the definite integral by substituting in values of x 

Area = 1/3.6^3 - 1/3.3^3 = 72 - 9 = 63

JR
Answered by Jonathan R. Maths tutor

4502 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 3x^3 - 7x + 10. Point A(-1, 14) lies on this curve. Find the equation of the tangent to the curve at the point A.


Integrate (12x^5 - 8x^3 + 3)dx giving the terms of the answer in the simplest terms


Integrate 2x^3 -4x +5


Simplify (7+sqrt(5))/(sqrt(5)-1), leaving the answer in the form a+b*sqrt(5)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences