Find the area bounded by the curve x^2-2x+3 between the limits x=0 and x=1 and the horizontal axis.

In order to find the area bounded by a curve and the horizontal axis, we must integrate the curve between the specified limits.

Firstly we must integrate the curve x^2-2x+3. To integrate a polynomial such as the one provided above, we must raise the power of each term and divide the term by the new power. Doing this will leave us with (x^3)/3 - x^2 + 3x + C. The new C term there as when integrating it is possible that a new constant can be found.

Now we must apply the limits to the newly integrated equation. This can be done by first substituing the values x=1 into the integrated equation and then minusing the integrated equation with substituted values of x=0: [(1^3)/3 - 1^2 + 3x(1) + C] - [(0^3)/3 - 0^2 + 3(0) + C] = [(1/3) - 1 + 3 + C] - [C] = 7/3.

It should be noted the C values are constant therefore cancel out.

We have now found that the area bounded by the horizontal axis, x=0, x=1 and the curve x^2-2x+3 is 7/3 units of area.

DG
Answered by Diljot G. Maths tutor

4711 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are radians, why can't we just use degrees?


A uniform ladder of mass 5 kg sits upon a smooth wall and atop a rough floor. The floor and wall are perpendicular. Draw a free body diagram for the ladder (you do not need to calculate any forces).


It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5


You have a five-litres jug, a three-litres jug, and unlimited supply of water. How would you come up with exactly four litres of water (with no measuring cup)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning