For the curve f(x) = 2x^3 - 54x, find the stationary points and state the nature of these points

Firstly, find the values of x where f'(x) = 0

f'(x) = 6x2 - 54

6x2 - 54 = 0

6(x+3)(x-3) = 0

x = 3, y = -108 and x = -3, y = 108

Next, find the values of f''(x) at these points

f''(x) = 12x

When x = 3, f''(x) = 36 which is positive and therefore (3,-108) is a minima.

When x = -3, f''(x) = -36 which is negetive and therefroe (-3,108) is a maxima.

RW
Answered by Ruby W. Maths tutor

4678 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I solve a quadratic equation?


Differentiate (2^x)(5x^2+5x)^2.


Find the set of values for which: x^2 - 3x - 18 > 0


Consider the infinite series S=Σ(from n=0 to infinite) u(down n) where u(down n)=lim (from n π to (n+1) π) ((sin t)/t) dt. Explain why the series is alternating.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning