For the curve f(x) = 2x^3 - 54x, find the stationary points and state the nature of these points

Firstly, find the values of x where f'(x) = 0

f'(x) = 6x2 - 54

6x2 - 54 = 0

6(x+3)(x-3) = 0

x = 3, y = -108 and x = -3, y = 108

Next, find the values of f''(x) at these points

f''(x) = 12x

When x = 3, f''(x) = 36 which is positive and therefore (3,-108) is a minima.

When x = -3, f''(x) = -36 which is negetive and therefroe (-3,108) is a maxima.

RW
Answered by Ruby W. Maths tutor

4680 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the curve (x^3)-4(y^2)=12xy at the point P(-8,8)


f(x) = x^3 - 13x^2 + 55x - 75 , find the gradient of the tangent at x=3


Given two functions x = at^3 and y = 4a, find dy/dx


Express 21/root7 in the form k root7.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning