You put £800 in a bank account, which earns you 3.5% compound interest per year. How much interest would you have earned after seven years?

We start with £800 in the bank. As we are earning compound interest, it means that each year we get 3.5% of the original £800, plus 3.5% of any interest that has already been earned. So, at the end of the year, you will have

1.035 x (however much money was in the account at the start of the year).

Let's start with year 1. You have £800 at the start, and at the end you have 

£800 x 1.035 = £828.

Now let's think about year 2. You start with £828, and end with

£828 x 1.035 = £856.98

We can also write it like this:

Money at end of year 2 = £828 x 1.035 = £800 x 1.035 x 1.035

Do you see how for each year we earn interest, we just multiply the original £800 by another 1.035?

So, after n years, the total in the account is:

£800 x 1.035n

This makes it easy to work out the total after 7 years, which is just:

£800 x 1.035=  £1017.82 (rounded to the nearest penny)

To find the interest earned, just subtract the original amount (in this case £800), and we get our answer:

£1017.82 - £800 = £217.82 interest

PM
Answered by Philippa M. Maths tutor

4539 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Edexcel, 2016, Foundation Maths GCSE: A running club has 50 members. 30 members take part in road races, 15 members take part in fell races, 12 members do not run in road or fell races. How many members run both fell and road races?


Solve x^2+3x-18=0 for x


Solve 6x^2 > 3 - 7x


Two ordinary fair dice are rolled. Work out the probability that both land on a value less than 4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences