What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?

First simplify the expression; 3x^(2)-3 to get;

[(x+1)/3(x^(2)-1)] - [1/(3x+1)] 

Using the fact that x^(2)-1 is the difference of two squares, we can simplify it to;

[(x+1)/3(x+1)(x-1)] - [1/(3x+1)] 

which simplifies to;

[1/3(x-1)] - [1/(3x+1)] 

finally adding the two gives

 4/3(x-1)(3x+1) 

FO
Answered by Francis Odhiambo O. Maths tutor

9643 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

You are given the function f(x)=x^3-x^2-7x+3, and that x=3 is a root of f(x)=0. Find the exact values of the other 2 roots. (6 marks)


y = 2x^3 + 15x^2 + 24x + 10 Find the stationary points on this curve and determine their nature


Solve the following definite integral: f(x)=3e^(2x+1) for the limits a=0 and b=1, leaving your answer in exact form.


Write 5cos(theta) – 2sin(theta) in the form Rcos(theta + alpha), where R and alpha are constants, R > 0 and 0 <=alpha < 2 π Give the exact value of R and give the value of alpha in radians to 3 decimal places.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences