What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?

First simplify the expression; 3x^(2)-3 to get;

[(x+1)/3(x^(2)-1)] - [1/(3x+1)] 

Using the fact that x^(2)-1 is the difference of two squares, we can simplify it to;

[(x+1)/3(x+1)(x-1)] - [1/(3x+1)] 

which simplifies to;

[1/3(x-1)] - [1/(3x+1)] 

finally adding the two gives

 4/3(x-1)(3x+1) 

FO
Answered by Francis Odhiambo O. Maths tutor

9958 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use integration by parts to find the integral of xsinx, with respect to x


How do you differentiate 5x


using integration by parts evaluate the integral of xsinx between x=0 and x =pi/2


Why is the integral of a function the area?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning