What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?

First simplify the expression; 3x^(2)-3 to get;

[(x+1)/3(x^(2)-1)] - [1/(3x+1)] 

Using the fact that x^(2)-1 is the difference of two squares, we can simplify it to;

[(x+1)/3(x+1)(x-1)] - [1/(3x+1)] 

which simplifies to;

[1/3(x-1)] - [1/(3x+1)] 

finally adding the two gives

 4/3(x-1)(3x+1) 

FO
Answered by Francis Odhiambo O. Maths tutor

10357 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1. The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) d d y x (ii) d d 2 y x 2 (3) (b) Verify that C has a stationary point when x = 2 (2) (c) Determine the nature of this stationary point, giving a reason for your answer.


A line has an equation y = e^(2x) - 10e^(x) +12x, find dy/dx


The line y = (a^2)x and the curve y = x(b − x)^2, where 0<a<b , intersect at the origin O and at points P and Q. Find the coordinates of P and Q, where P<Q, and sketch the line and the curve on the same axes. Find the tangent at the point P.


Core 3 Differentiation: If y = (3x^2 + 2x + 5)^10, find its derivative, dy/dx. Hint: Use the chain rule.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning