Show that the derivative of ln(x) = 1/x

We can start by letting y = ln(x)

What we are trying to show is that dy/dx = 1/x

Since y = ln(x), then e= eln(x) = x

Taking the derivative of each side of this equation will give us ey.dy/dx = 1

If we divide each side of this new equation by ethen we have that dy/dx = 1/ey = 1/x as required.

JC
Answered by James C. Maths tutor

10381 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the shaded finite region between the curve and the axis for the curve: 3x^2 +11x -4 = 0


Differentiate with respect to x: 3 sin^2 x + sec 2x


By forming and solving a quadratic equation, solve the equation 5*cosec(x) + cosec^2(x) = 2 - cot^2(x) in the interval 0<x<2*pi, giving the values of x in radians to three significant figures.


How do I differentiate and integrate powers of x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning