Show that the derivative of ln(x) = 1/x

We can start by letting y = ln(x)

What we are trying to show is that dy/dx = 1/x

Since y = ln(x), then e= eln(x) = x

Taking the derivative of each side of this equation will give us ey.dy/dx = 1

If we divide each side of this new equation by ethen we have that dy/dx = 1/ey = 1/x as required.

JC
Answered by James C. Maths tutor

9058 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the integral of 2x^5 - 1/4x^3 - 5


Integrate this funtion f'(x)=2x +4 with respect to x (C1 integration)


Solve the following: sinx - cosx = 0 for 0≤x≤360


2x + y = 12. P = xy^2. Show that P = 4x^3 - 48x^2 + 144x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences