Find the integral of log|x| by integration by parts

The question says to use integration by parts on this question, but at the minute we only have one variable.

Therefore, we introduce a 1, so that log|x|= 1*log|x|, here we have not altered the value of the function, but have intoduced a variable so that integration by parts can be used.

The derivative of Log|x| is simply 1/x, so it will be the 1 that we will integrate, which is x.

We then sub these into the by parts formula of uv-∫u'v

This is therefore equal to xlog|x|-∫x/x.dx

=xlog|x|-∫1dx

=xlog|x|-x.

LP
Answered by Laura P. Maths tutor

5027 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 4x^3 -1 + 2x^1/2 (where x>0) find dy/dx.


f(x) = (x-5)/(x^2+5x+4), express this in partial fractions and hence find the integral of f(x) dx between x=0 and x=2, giving the answer as a single simplified logarithm.


f(x) = 2 / (x^2 + 2). Find g, the inverse of f.


How does one find the equation of a line passing through 2 points of a graph?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences