Where z is a complex number, what is the cartesian form of |Z-2+3i| = 1?

Z is simply a general complex number, which can be written as Z = x+iyHere |Z-2+3i| = 1 can be written as |Z-(2-3i)| = 1, which is just an expression for every Z whose distance from the point (2,-3i) is equal to 1.We can solve this by recalling that Z = x+iy, and so we can seperate the real and imaginary parts in the modulus function. i.e. 1 = |(x-2) + i(y+3)| Evaluating the modulus now becomes simple as we calculate the magnitude using pythagoras. This Yields:12 = (x-2)2 + (y+3)2 , which is the cartesian form!we recognise this as the equation of a circle, with centre (2,-3) and radius 1. 

MH
Answered by Mark H. Maths tutor

10216 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For which values of k does the quadratic equation 2x^2+kx+3=0 only have one unique solution?


Differentiate the function f(x)=2xsin3x


Using the sum, chain and product rules, differentiate the function f(x) = x^n +x^3 * sin(1/[3x])


How do I integrate log(x) or ln(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning