Where z is a complex number, what is the cartesian form of |Z-2+3i| = 1?

Z is simply a general complex number, which can be written as Z = x+iyHere |Z-2+3i| = 1 can be written as |Z-(2-3i)| = 1, which is just an expression for every Z whose distance from the point (2,-3i) is equal to 1.We can solve this by recalling that Z = x+iy, and so we can seperate the real and imaginary parts in the modulus function. i.e. 1 = |(x-2) + i(y+3)| Evaluating the modulus now becomes simple as we calculate the magnitude using pythagoras. This Yields:12 = (x-2)2 + (y+3)2 , which is the cartesian form!we recognise this as the equation of a circle, with centre (2,-3) and radius 1. 

MH
Answered by Mark H. Maths tutor

9267 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u=cos(2x)to find ∫(cos(2x))^2 (sin(2x))^3dx


Given that y=x^3 +2x^2, find dy/dx . Hence find the x-coordinates of the two points on the curve where the gradient is 4.


I don't understand the point of differentiation or integration


The line AB has equation 3x + 5y = 7. What is the gradient of AB?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences