Where z is a complex number, what is the cartesian form of |Z-2+3i| = 1?

Z is simply a general complex number, which can be written as Z = x+iyHere |Z-2+3i| = 1 can be written as |Z-(2-3i)| = 1, which is just an expression for every Z whose distance from the point (2,-3i) is equal to 1.We can solve this by recalling that Z = x+iy, and so we can seperate the real and imaginary parts in the modulus function. i.e. 1 = |(x-2) + i(y+3)| Evaluating the modulus now becomes simple as we calculate the magnitude using pythagoras. This Yields:12 = (x-2)2 + (y+3)2 , which is the cartesian form!we recognise this as the equation of a circle, with centre (2,-3) and radius 1. 

MH
Answered by Mark H. Maths tutor

10209 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the angle between two lines in three dimensional vector space given two points on line 1 and the vector equation of line 2


integrate cos(2x) + sin(3x)


An object of mass 3kg is held at rest on a rough plane. The plane is inclined at 30º to the horizontal and has a coefficient of friction of 0.2. The object is released, what acceleration does the object move with?


How can you integrate ln(x) with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning