solve sin(2x)=0.5. between 0<x<2pi


1)Take the inverse sin to take x from the sin(2x):

2x=arcsin(0.5).

2)Evaluate arcsin(0.5) to get pi/6:

so 2x= pi/6

3)Dividing by 2 to simplify we get 

x=pi/12.

4)To find the second solution we note that (pi/2)-(pi/12) =(5pi/12) is also a solution. 

So x= (5pi/12)

5)Sin(2x) has a period of pi. So to find the rest of the solutions we add pi to our previous solutions. 

So now x=pi/12, 5pi/12, 13pi/12 , 17pi/12

YZ
Answered by Yinglan Z. Maths tutor

24127 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many lines of method should I write in order to get all of the marks?


Find the an expression for dy/dx of the function y=(4x+1)ln(3x+1) and the gradient at the point x=1.


If the velocity of a particle is given by t^2+t, then determine the acceleration of the particle when t=4.


Calculate the volume of revolution generated by the function, f(x) = (3^x)√x, for the domain x = [0, 1]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning