solve sin(2x)=0.5. between 0<x<2pi


1)Take the inverse sin to take x from the sin(2x):

2x=arcsin(0.5).

2)Evaluate arcsin(0.5) to get pi/6:

so 2x= pi/6

3)Dividing by 2 to simplify we get 

x=pi/12.

4)To find the second solution we note that (pi/2)-(pi/12) =(5pi/12) is also a solution. 

So x= (5pi/12)

5)Sin(2x) has a period of pi. So to find the rest of the solutions we add pi to our previous solutions. 

So now x=pi/12, 5pi/12, 13pi/12 , 17pi/12

YZ
Answered by Yinglan Z. Maths tutor

23320 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the intergral of 6.x^2 + 2/x^2 + 5 with respect to x?


A curve has equation y^3+2xy+x^2-5=0. Find dy/dx.


The points A and B have coordinates (3, 4) and (7, 6) respectively. The straight line l passes through A and is perpendicular to AB. Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.


Differentiate y = (3x − 2)^4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning