Prove that (sinx + cosx)^2 = 1 + 2sinxcosx

Starting on the left hand side we can expand out the brackets to get:
(sinx + cosx)(sinx + cosx)
sin2x+sinxcosx+sinxcosx+cos2x
Grouping together the like terms we can rearrange it to be:
sin2x + cos2x + 2sinxcosx
We now have one of the terms on the right hand side. We only need to get the 1. If we remember our identity sin2x + cos2x = 1 we can remove the first two terms and replace them with a 1, giving us:
1 + 2sinxcosx, the same as the right hand side, therefore proving the two are equal

AG
Answered by Adam G. Maths tutor

11382 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x)= 2x^3 -7x^2 + 2x +3. Given that (x-3) is a factor of f(x), express f(x) in a fully factorised form.


Use the identity for sin(A+B) to find the exact value of sin 75.


How can we remember the difference between differentiation and integration?


Find the derivative of f(x) = 2xe^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning