Find the integral of sin^2(X)

As soon as you see a question asking you to integrate the square of sin, cos or tan, your first approach should be to use trigonometric identities and double angle formulas.

For sin2(X), we will use the cos double angle formula:
cos(2X) = 1 - 2sin2(X)

The above formula can be rearranged to make sin2(X) the subject:
sin2(X) = 1/2(1 - cos(2X))

You can now rewrite the integration: 
∫sin2(X)dX = ∫1/2(1 - cos(2X))dX

Because 1/2 is a constant, we can remove it from the integration to make the calculation simpler. We are now integrating:
1/2 x ∫(1 - cos(2X)) dX = 1/2 x (X - 1/2sin(2X)) + C

It is very important that as this is not a definite integral, we must add the constant C at the end of the integration.

Simplifying the above equation gives us a final answer:
∫sin2(X) dX = 1/2X - 1/4sin(2X) + C

KF
Answered by Kyna F. Maths tutor

436320 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x, y = (x^3)*ln(2x)


y = 1/x^2, differentiate y (taken from AQA 2018 past paper)


2 equations intersect each other, y = x + 2 and y = x^2. Find the area of the shaded region between the points of intersection giving your answer to 3 significant figures. (shaded region will be shown)


Using the limit definition of the derivative, find the derivative of f(x)=sin(3x) at x=2π


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences