What is the gradient of y = xcos(x) at x=0?

First we want to calculate the derivative of y. To do this we use the product rule:If we rewrite y as y = uv, then dy/dx = vdu/dx + udv/dx.Here, we have u = x and v = cos(x).That means du/dx = 1 and dv/dx = -sin(x).Therfore dy/dx = cos(x)1 + x(-sin(x)) = cos(x) - xsin(x).To evaluate the gradient of y at x=0 we substitute x=0 into the derivative we have just calculated:gradient = cos(0) - 0*sin(0) = 1

FF
Answered by Fraser F. Maths tutor

4574 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate y = 4x^3(12e^-4x) with respect to x


How do you integrate sin^2(3x)cos^3(3x) dx?


The curve C has equation (4x^2-y^3+3^2x)=0. The point P (0,1) lies on C: what is the value of dy/dx at P?


Solve for 0<x≤2π, cos^2(x)-3cos(x)=5sin^2(x)-2, giving all answers exactly


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning