What is the gradient of y = xcos(x) at x=0?

First we want to calculate the derivative of y. To do this we use the product rule:If we rewrite y as y = uv, then dy/dx = vdu/dx + udv/dx.Here, we have u = x and v = cos(x).That means du/dx = 1 and dv/dx = -sin(x).Therfore dy/dx = cos(x)1 + x(-sin(x)) = cos(x) - xsin(x).To evaluate the gradient of y at x=0 we substitute x=0 into the derivative we have just calculated:gradient = cos(0) - 0*sin(0) = 1

FF
Answered by Fraser F. Maths tutor

4570 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A line L is parallel to y = 4x+5 and passes through the point (-1,6). Find the equation of the line L in the form y = ax+b.


A circle with centre C has equation x^2+8x+y^2-12y=12. The points P and Q lie on the circle. The origin is the midpoint of the chord PQ. Show that PQ has length nsqrt(3) , where n is an integer.


A ball is fired from a cannon at 20m/s at an angle of 56degrees to the horizontal. Calculate the horizontal distance the ball travels as well as its maximum height reached.


State the interval for which sin x is a decreasing function for 0⁰ ≤ x ≤ 360⁰.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning