Find the values of x for the equation: x^2 - 8x = 105

When presented with an equation that involves x^2, it is likely to be a quadratic equation. This leads us to rearrange to the equation above into the form of ax^2 + b + c = 0. Therefore the equation can be rearranged into x^2 - 8x - 105 = 0.

There are two main methods to solve this quadratic equation - factorising and quadratic formula.

Factorising involves finding two numbers that can multiply together to give -105 and add to form -8. As both numbers are negative we can deduce that one of those numbers are negative and the other is positive.

First start by stating the factors of 105: 1, 3, 5, 7 & 15. Using these numbers, find a pair that would give you a difference of 8. This is 7 and 15. There are two equations that we could form from this:

- (x+7)(x-15)=0

- (x-7)(x+15)=0

Only the first quadratic equation gives rise to -8x and therefore is the correct equation. The values of x is then -7 & 15 as you take the number within the bracket and inverse the sign.

The alternative method is using the quadratic formula: x = (-b +/- SQRT(b^2 - 4ac))/2a. The values for a = 1, b = -8 & c = -105. By substituting the values into the equation we get the answers -7 & 15.

DM
Answered by Dhulaxy M. Maths tutor

5607 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

2x + 4 > 16


Bhavin, Max and Imran share 6000 rupees in the ratios 2 : 3 : 7. Imran then gives 3/5 of his share of the money to Bhavin. What percentage of the 6000 rupees does Bhavin now have? Give your answer correct to the nearest whole number.


√3(√30 + √8) can be simplified into the follwing format: x√10 + y√6 where are x and y are integers. Find the value of x and y.


In a class there are 57 students. Of these 32 study Spanish, 40 study German and 12 students study neither. How many students study Spanish but not German?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning