Integrate x*ln(x)

This example provides us with a better understanding of how "Integration by parts" works. Building an extensive knowledge of Integral calculus requires a lot of work, but once the basics are fully understood, it follows naturally that one would go into a more deep approach.

Recall: ∫fg′=fg−∫f′g (Integration by parts), where f and g are well-defined functions

Approach:

1) Think before you act

2) Think two steps ahead

3) Be clear and not verbose

Solution:

 ∫xlnx dx=

= ∫ [(x^2)/2]' lnx dx=

= [(x^2)/2]lnx - ∫[(x^2)/2] (lnx)' dx=

= [(x^2)/2]lnx - 1/2∫(x^2)*(1/x) dx=

= [(x^2)/2]lnx - 1/2∫xdx=

= [(x^2)/2]lnx - 1/2 * (x^2)/2   +C (don't forget the constant)=

= (simple manipulation) [(x^2)(2lnx -1)]/4 +C

Now remember, Maths can be very easy once you take action. The best car in the world will not take you to the right place if you don't know where you want to go. #naturalenthusiasm

MM
Answered by Maximilian M. Maths tutor

6612 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 5(x + 2)/(x + 1)(x + 6) with respect to x


Differentiate(dx) xy+4y-13


Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))


Differentiate y = (x^2 + 3)^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning