Solve algebraically: 2x - 5y = 11, 3x + 2y = 7

Here we have two simultaneous equations with two unknowns. In order to solve this, we must first elimate one of the variables. 

To do this we will first make the coefficient (the number before) of one of the unknown variables the same in both equations. 

In this question we can multiple equation 1 by 2 (this means multiplying each individual component) so that; 

4x - 10y = 22 

Now the coefficient of y is -10. We can make the coefficent of y 10 in equation 2 by multiplying by 5: 

15x + 10y = 35 

The coefficients of y are now 10 and -10. Now we can solve for x by adding both equations together: 

19x = 57 

Divide both sides by 19 and x = 3. 

To solve for y, all we need to do is substitute x=3 back into our original equation: 

2(3) - 5y = 11 

6 - 5y = 11 

-5y = 6 

y = -1 

To check the answer we can substitute both values back into the other equation: 
3(3) + 2(-1) = 7 -> Which is true. 

GD
Answered by Georgia D. Maths tutor

10441 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y=7-2x^5. What's dy/dx?Find an equation for the tangent to the curve where x=1. Is itan increasing or decreasing function when x=-2?


Use integration by parts to evaluate: ∫xsin(x) dx.


Find the intergral of 2x^5 - 1/4x^3 - 5 with respect to x.


Factorise x^3+3x^2-x-3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning