A line has an equation y = e^(2x) - 10e^(x) +12x, find dy/dx

To differentiate this equation, treat it like you would any other equation you are differentiating without exponentials i.e. take each term on it's own and differentiate that individually, then put the answer together at the end.DON'T FORGET: y = eax, dy/dx = aeax1) Take the term e2x and differentiate.y = e2xdy/dx = 2e2x2) Take the term -10ex and differentiate. (Don't forget about the negative!)y = -10exdy/dx = -10ex3) Take the term 12x and differentiate.y = 12xdy/dx = 124) Sum all the components to give the final answer.dy/dx = 2e2x - 10ex +12

SV
Answered by Shruti V. Maths tutor

7021 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use implicit differentiation to find dy/dx of a curve with equation x^3 + yx^2 = y^2 + 1.


Differentiate (3x)e^(3x)


A curve has equation y = 20x - x^2 - 2x^3 . The curve has a stationary point at the point M where x = −2. Find the x- coordinate of the other stationary point of the curve


solve the following definite integral by decomposition into partial fractions: \int_{1}^{2}{\frac{1}{x^2+x}}dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning