Solve for 0<=θ<π, the equation sin3θ-(sqrt3)cosθ=0 (C2)

Rearrange the equation to give sin3θ=(sqrt3)cos3θ, then divide through by cos3θ to give sin3θ/cos3θ=sqrt3. We know from our trig identities that sinx/cosx=tanx, so our equation now becomes tan3θ=sqrt3. Use your calculator to find 3θ, I got 3θ=π/3, so θ=π/9 which is within our range for θ.

BH
Answered by Becky H. Maths tutor

9255 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle with centre C has equation: x^2 + y^2 + 20x - 14 y + 49 = 0. Express the circle in the form (x-a)^2 +(y-b)^2=r^2. Show that the circle touches the y-axis and crosses the x-axis in two distinct points.


Solve the equation 2x^3 - 5x^2 - 4x + 3 = 0.


solve sin(2x)=0.5. between 0<x<2pi


Integrate x/(x^2+2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning