Solve for 0<=θ<π, the equation sin3θ-(sqrt3)cosθ=0 (C2)

Rearrange the equation to give sin3θ=(sqrt3)cos3θ, then divide through by cos3θ to give sin3θ/cos3θ=sqrt3. We know from our trig identities that sinx/cosx=tanx, so our equation now becomes tan3θ=sqrt3. Use your calculator to find 3θ, I got 3θ=π/3, so θ=π/9 which is within our range for θ.

BH
Answered by Becky H. Maths tutor

8429 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can you remember what sin(x) and cos(x) differentiate or integrate to?


Integrate ((5x^3) + ((2x)^-1) + (e^2x))dx.


Solve the equation 3 sin^2 theta = 4 cos theta − 1 for 0 ≤ theta ≤ 360


A cubic curve has equation y x3 3x2 1. (i) Use calculus to find the coordinates of the turning points on this curve. Determine the nature of these turning points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences