Solve for 0<=θ<π, the equation sin3θ-(sqrt3)cosθ=0 (C2)

Rearrange the equation to give sin3θ=(sqrt3)cos3θ, then divide through by cos3θ to give sin3θ/cos3θ=sqrt3. We know from our trig identities that sinx/cosx=tanx, so our equation now becomes tan3θ=sqrt3. Use your calculator to find 3θ, I got 3θ=π/3, so θ=π/9 which is within our range for θ.

BH
Answered by Becky H. Maths tutor

9256 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you use the following expression to approximate [(4-5x)/(1+2x)(2-x)] when x=5 (A2 pure)


How to differentiate 2x^5-4x^3+x^2 with respect to x


Find the exact value of sin(75°). Give your answer in its simplest form.


Given that the equation of the curve y=f(x) passes through the point (-1,0), find f(x) when f'(x)= 12x^2 - 8x +1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning