How do you solve an equation by completing the square?

Firstly, you can only complete the square on quadratic functions (functions in the form Ax2+Bx+C)

If A=1,

Consider B, the coefficient of x. Substitute it into ( x + (B/2) )2

We know if we multiply this out, we will get x2+Bx+(B/2)2

However, we want x2+Bx+C. 

We therefore subtract the (B/2)2 we don't want and add the C we do. 

This gives us ( x + (B/2) )2 - (B/2)2 + C. 

This method is called 'completing the sqaure'

If A does not = 1, manipulate the quadratic so it is in the form A( x+ (B/A) x + (C/A))Solve the bracket as normal and multiply through by A at the end.

 

 

EJ
Answered by Emma J. Maths tutor

4584 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I find all the solutions to cos(3x) = sqrt(2)/2 for 0<=x<=2pi ?


Sketch the graph of f(x) = sin(x). On the same set of axes, draw the graph of f(x)+2, f(2x) and f(-x). By observing your graphs of f(x) and f(x), if f(a)=1, what is the value of f(-a)?


Using first principles find the differential of x^2


given y=(1+x)^2, find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences