Solve the Simultaneous equations '2x-3y=24' and '6x+2y=-5'

To solve you must make sure there are the same number of either x's or y's in both equations. We will call '2x-3y=24' equation 1, and '6x+2y=-5' equation 2. If you multiply equation 1 by 3 then you get '6x-9y=72'. Now both equations have 6x, next you need to get rid of the x. In this case we will subtract equation 1 from equation 2. This gives '6x+2y-(6x-9y)=-5-72. If you simplify this it gives '11y=-77' and dividing by common factors (11) gives 'y=-7'. This can then be put into the original form of equation 1 to find x. '2x-3*(-7)=24', '2x+21=24', '2x=3', 'x=1.5'You should always check your answer by putting the values of x and y into the other equation (in this case equation 2 and checking it is correct. e.g. '61.5+2(-7)=-5', '9-14=-5'

ES
Answered by Elena S. Maths tutor

7101 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In a sale a bag is reduced by 30%. The bag is now £31.50. Work out the original price of the bag.


What is Pythagoras' theorem and what can it be used to figure out?


Can you make 'p' the subject of the following equation? 4(p-2q)= 3p+2


Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences