Why can graphite conduct electricity but not diamond?

In graphite, each carbon atom is covalently bonded to three other carbon atoms. One of the four outer shell electrons of each carbon atom is therefore not engaged in bonding, and becomes delocalised. These delocalised electrons are free to move around the structure, carrying charge and allowing graphite to conduct electricity.

However, in diamond, each carbon atom is covalently bonded to four other carbon atoms. All four of the outer shell electrons in each carbon atom are engaged in bonding, leaving no delocalised electrons free to move around the structure and carry charge.

Answered by Tierney A. Chemistry tutor

65801 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

Describe how to separate hydrocarbons of different lengths


If 20 kg of calcium carbonate was reacted with excess sodium chloride in the following reaction (2NaCl+CaCo3-->Na2Co3+CaCl2) what is the maximum mass of sodium carbonate that could be made?


Describe how crude oil is separated by fractional distillation.


How many protons, neutrons and electrons are present in a Lithium (Li+) ion?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy