Why can graphite conduct electricity but not diamond?

In graphite, each carbon atom is covalently bonded to three other carbon atoms. One of the four outer shell electrons of each carbon atom is therefore not engaged in bonding, and becomes delocalised. These delocalised electrons are free to move around the structure, carrying charge and allowing graphite to conduct electricity.

However, in diamond, each carbon atom is covalently bonded to four other carbon atoms. All four of the outer shell electrons in each carbon atom are engaged in bonding, leaving no delocalised electrons free to move around the structure and carry charge.

TA
Answered by Tierney A. Chemistry tutor

81874 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

describe advantages and disadvantages of using hydrogen instead of fossil fuels


25.00cm3 of sodium hydroxide was pipetted into a conical flask. It was titrated against 0.10mol/dm3 hydrochloric acid. The mean volume of acid needed was 24.00cm3. Calculate the concentration of sodium hydroxide used in the titration.


How do you increase the rate of a reaction?


How do perturbations to a system affect the equilibrium position of a reaction?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences