Find the values of a, b and c in the equation: (5x + 3)(ax + b) = 10x^2 + 11x + c.

We can go about solving this problem by equating the coefficients of x^2, x, and the constant c. First of all, we must expand the bracket (5x + 3)(ax + b). One helpful way of doing this correctly is the FOIL method: First, Outer, Inner, Last. So to expand the bracket we multiply the First number in each bracket, the values on the Outside of the equation, the values on the Inside of the equation and the Last values in each bracket. We then add the values we get together. So we should have: F: 5x * ax = 5ax^2, O: 5x * b = 5bx, I: 3 * ax = 3ax, L: 3 * b = 3b When added together we get 5ax^2 + (5b + 3a)x + 3b. Now we can equate this to 10x^2 + 11x + c. Comparing coefficients we see that - 5a = 10. By dividing both sides by 5 get a = 2. - 5b + 3a = 11. By substituting a = 2 into this formula we get that b = 1. - 3b = c. By substituting b = 1 we find that c = 3. Now we have solved the question!

CR
Answered by Camilla R. Maths tutor

5416 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Five numbers have a mean of 9.4 . Four of the numbers are 3, 5, 10 and 12. Work out the range of the five numbers. ( 4 marks )


How do I solve two simultaneous equations?


For the curve C with equation y = x4 – 8x2 + 3. Find dy/dx


Katie wants to buy 4 adult show tickets for £10 each and 2 child show tickets for £3 each. There is a 10% booking fee and 3% is then added for paying by credit card. Work out the total charge for Katie if she pays with a credit card.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning