Find the values of a, b and c in the equation: (5x + 3)(ax + b) = 10x^2 + 11x + c.

We can go about solving this problem by equating the coefficients of x^2, x, and the constant c. First of all, we must expand the bracket (5x + 3)(ax + b). One helpful way of doing this correctly is the FOIL method: First, Outer, Inner, Last. So to expand the bracket we multiply the First number in each bracket, the values on the Outside of the equation, the values on the Inside of the equation and the Last values in each bracket. We then add the values we get together. So we should have: F: 5x * ax = 5ax^2, O: 5x * b = 5bx, I: 3 * ax = 3ax, L: 3 * b = 3b When added together we get 5ax^2 + (5b + 3a)x + 3b. Now we can equate this to 10x^2 + 11x + c. Comparing coefficients we see that - 5a = 10. By dividing both sides by 5 get a = 2. - 5b + 3a = 11. By substituting a = 2 into this formula we get that b = 1. - 3b = c. By substituting b = 1 we find that c = 3. Now we have solved the question!

CR
Answered by Camilla R. Maths tutor

5764 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

'There are two adults and two children in the Adams family. They buy an all-day travel ticket for each person. The price is £8 for each adult and £5 for each child. They also buy 4 ice-creams at £1.95 each. How much do they spend in total?'


A store is having a sale on sofas. One sofa was originally £400 but is reduced by 60% in the sale. What is the price of the sofa in the sale?


How do I find the roots of a quadratic equation?


How do you factorise quadratic equations by completing the square?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning