Solve the following simultaneous equations: 2a-5b=11, 3a+2b=7

Let 2a-5b=11 be Equation 1 and 3a+2b=7 be Equation 2. To find a and b, we first need to eliminate one of these variables from the equation. Firstly we can eliminate a from both equations to find b. To do this, we can multiply Equation 1 by 3 and Equation 2 by 2. This gives us: 6a-15b=33, 6a+4b=14. If we take away Equation 1 from Equation 2, we are left with: -15b-4b=33-14. Solving this gives: -19b=19, b=-1. Now that we have obtained b, we can substitute this value back into one of our original equations to obtain a: 2a-5b=11, 2a+5=11, 2a=6, a=3. Hence a=3, b=-1. Note:You can also solve these equations by elimination b first rather than a, you will still obtain the same answer.

GC
Answered by Gemma C. Maths tutor

15390 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise the following expression x^2+11x+24=0


find the values of x when 3x^2 - 6x - 9


There are 300 students at a school who have been asked to attend assembly. 1/10 students are sat on chairs, 85% of students are sat on the floor, the rest do not attend assembly. How many students did not attend assembly?


f(x) = x^2 + 4x − 6 f(x) can be written in the form (x + m)^2 + n. Find the value of m and the value of n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences