N=2a+b, where a is a two-digit square number and b is a two-digit cube number. What is the smallest possible value of N?

Considering the smallest possible value of N will mean finding the smallest possible values of a and b to give the minimum N. As a must be a square number, let's consider the square numbers: 1 squared is 1; 2 squared is 4; 3 squared is 9; 4 squared is 16. Here we have reached the smallest two-digit square number, as al square numbers up to 16 (1, 4, 9) are all one-digit. So a must be 16. Considering b; b must be a cube number. So think of all the cube numbers in increasing order, as we did with the squares: 1 cubed is 1, 2 cubed is 8, 3 cubed is 27. Here we have reached a 2-digit number. So, as 27 is the smallest two-digit cube number, b must b 27. So inserting our values for a and b into the equation for N gives 2a+b=2(16)+27=59, so the answer is 59.

KH
Answered by Katherine H. Maths tutor

8062 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is (2/3)^(-1/3)?


Solve these simultaneous equations, 2x+y=6 and 3y-x=11


how do you convert repeating decimals into a fraction?


factorise: 12y^2 -20y+3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning