Pythagoras: If you have a right angled triangle PQR, and length PQ=5cm, length QR=8cm (which is the longest length), then calculate length PR to two decimal places.

Pythagoras' theorem is: a^2+b^2=c^2 (a=short side, b=short side, c=longest side/hypotenuse, ^=squared). Now applying that to this question would mean that a=PQ, b=PR and c=QR. So we can use the figures given in the question and insert it into the equation as follows: (5^2) + (b^2)=(8^2). Now to calculate the unknown length we need to rearrange the equation which we can do by taking 5^2 to the other side of the equals sign (and when doing so this goes from being positive to negative): b^2 = (8^2)-(5^2). We can simplify this equation by working out what b^2 is equal to: b^2=64-25 and therefore b^2=39. Now to find the answer to what the length PR is we have to square root both sides of the equation and so we get b=√39 and so we can calculate (using a calculator) that b= 6.24499799... and to two decimal places we can say that length PR=6.24cm

PS
Answered by Pree S. Maths tutor

10929 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Rationalise the denominator of the fraction 3/sqrt(5)


I set up a tent (assume it’s a regular triangular prism) of length 2.2m. The triangular face of the tent is an isosceles triangle. The two identical sides are both 1.4m long and have an angle of 34degrees between them. Work out the volume of the tent -3sf


Point A (-3,5) and point B (1,-15) are to be connected to form a straight line, fing the equation of the line in the form y=mx+c?


A line intercepts point A at (4,4) and point B (8,12). Find the gradient and the intercept of the line.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences