Is a line ax+by+c=0 tangent to a circle?

Get a line a form y=-ax/b-c/b, then substitute into a cirle equation (x-p)^2 +(y-s)^2=r^2. Get a quadratic and find whether a discriminant is equal to zero. If it is then the line is tangent to a circle. Otherwise, for d>0 the line cuts through two points on a circle, for d<0 the line has no common points with a circle.

JO
Answered by Jakub O. Maths tutor

9107 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(i) Prove sin(θ)/cos(θ) + cos(θ)/sin(θ) = 2cosec(2θ) , (ii) draw draph of y = 2cosec(2θ) for 0<θ< 360°, (iii) solve to 1 d.p. : sin(θ)/cos(θ) + cos(θ)/sin(θ) = 3.


What is the integral of x^x?


How can you find out if two lines expressed in their vector form intersect?


The lines y = 3x² - x + 5/2 intersects the line y = x/2 +7 at two points. Give their coordinates. Show your working


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning