Is a line ax+by+c=0 tangent to a circle?

Get a line a form y=-ax/b-c/b, then substitute into a cirle equation (x-p)^2 +(y-s)^2=r^2. Get a quadratic and find whether a discriminant is equal to zero. If it is then the line is tangent to a circle. Otherwise, for d>0 the line cuts through two points on a circle, for d<0 the line has no common points with a circle.

JO
Answered by Jakub O. Maths tutor

9108 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the substitution u = 2 + √(2x + 1), or other suitable substitutions, find the exact value of 4 0 1 ∫ 2 (2 1) +√ +x dx giving your answer in the form A + 2ln B, where A is an integer and B is a positive constant


integrate x^2(2x - 1)


how can differentiate using the product and chain rule? e.g y=(4x+1)^3(sin2x), find dy/dx.


Let y be a function of x such that y=x^3 + (3/2)x^2-6x and y = f(x) . Find the coordinates of the stationary points .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning