At x=3, is the polynomial y= (4/3)x^3 -6x^2 + 11 at a maxima or minima?

First, take the first differential: y' = 4x^2 -12x. At x=3 y'= 0 so therefore the function is at a point of inflection. Taking the second derivative: y'' = 8x -12. At x=3 y''= 12. As 12 is greater than 0, the polynomial is at a minimum. If the second differential was less than 0, it would be a point of maximum and if it equaled 0 then the test fails. We must find out by comparing the sign of values of the first derivative slightly less and slightly more than the value.

JT
Answered by James T. Maths tutor

3903 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

"Why is Mathematics important, I wont use any of it when I start work?"


Where does the quadratic formulae come from?


A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.


How do I find the minimum point for the equation y = x^2 -5x - 6?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning