At x=3, is the polynomial y= (4/3)x^3 -6x^2 + 11 at a maxima or minima?

First, take the first differential: y' = 4x^2 -12x. At x=3 y'= 0 so therefore the function is at a point of inflection. Taking the second derivative: y'' = 8x -12. At x=3 y''= 12. As 12 is greater than 0, the polynomial is at a minimum. If the second differential was less than 0, it would be a point of maximum and if it equaled 0 then the test fails. We must find out by comparing the sign of values of the first derivative slightly less and slightly more than the value.

JT
Answered by James T. Maths tutor

3627 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (tanx)^2


Ignoring air resistance and assuming gravity to equal 9.81. If a ball of mass 1kg is dropped from a height of 100m, calculate it's final velocity before it hits the ground.


A small stone is projected vertically upwards from a point O with a speed of 19.6m/s. Modelling the stone as a particle moving freely under gravity, find the length of time for which the stone is more than 14.7 m above O


Find dy/dx of the equation y=x^2 ln⁡(2x^2+1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences