How do you differentiate (2x+xe^6x)/(9x-(2x^2)-ln(x)) w.r.t. x?

This problem requires using the quotient rule, product rule and the chain rule. The derivative of the entire thing is ((du/dx)v-(dv/dx)u)/v^2 where u=2x+xe^6x and v=9x-2x^2-lnx. dv/dx is relatively straitforward: 9-4x-(1/x). 2x+xe^6x is less so, because this requires differentiating xe^6x. First notice this is two functions of x times each other, so we can use the product rule: so d/dx(xe^6x)=x(d/dx(e^6x))+e^6x. What is d/dx(e^6x)? We have to use the chain rule here: suppose g=6x, hence d/dg(e^g)xdg/dx=d(e^6x)=6e^6x. So now combining this altogether we know the derivative of the entire thing: ((2+e^6x+xe^6x)(9x-2x^2-lnx)-(2x+xe^6x)(9-4x-1/x))/(9x-2x^2-lnx)^2

SH
Answered by Seth H. Maths tutor

3331 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate 2^x?


The curve C has an equation y = sin(2x)cos(x)^2. Find dy/dx. Find normal to curve at x = pi/3 rad, giving answer in exact form.


Calculate the volume of revolution generated by the function, f(x) = (3^x)√x, for the domain x = [0, 1]


The finite region S is bounded by the y-axis, the x-axis, the line with equation x = ln4 and the curve with equation y = ex + 2e–x , (x is greater than/equal to 0). The region S is rotated through 2pi radians about the x-axis. Use integration to find the


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning