How do you differentiate (2x+xe^6x)/(9x-(2x^2)-ln(x)) w.r.t. x?

This problem requires using the quotient rule, product rule and the chain rule. The derivative of the entire thing is ((du/dx)v-(dv/dx)u)/v^2 where u=2x+xe^6x and v=9x-2x^2-lnx. dv/dx is relatively straitforward: 9-4x-(1/x). 2x+xe^6x is less so, because this requires differentiating xe^6x. First notice this is two functions of x times each other, so we can use the product rule: so d/dx(xe^6x)=x(d/dx(e^6x))+e^6x. What is d/dx(e^6x)? We have to use the chain rule here: suppose g=6x, hence d/dg(e^g)xdg/dx=d(e^6x)=6e^6x. So now combining this altogether we know the derivative of the entire thing: ((2+e^6x+xe^6x)(9x-2x^2-lnx)-(2x+xe^6x)(9-4x-1/x))/(9x-2x^2-lnx)^2

SH
Answered by Seth H. Maths tutor

3460 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

2 log(x + a) = log(16a^6) where a is a positive constant. How do I find x in terms of a?


Use the substitution u=x^2-2 to find the integral of (6x^3+4x)/sqrt( x^2-2)


Given f(x)=2x^3 - 2x^2 + 8x, find f'(x) and f"(x).


find dy/dx for the equation y = 6x ^(1/2)+x+3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning