Edexcel C3 June 2015 Q1: tan(x)=p, where p is a constant. Using standard trigonometric identities, find the following in terms of p. a) tan(2x). b) cos(x). c) cot(x-45).

a) tan(A+B)=(tanA+tanB)/(1-tanAtanB) So, tan(2x)=[tan(x)+tan(x)]/[1-(tanx)(tanx)]. Therefore, tan(2x)=[2tan(x)]/[1-tan^2(x)] = 2p/(1-p^2). b) cos(x)=1/sec(x). Using other trigonometric identities, we know that sec^2(x)=1+tan^2(x). Hence, cos(x)=1/sqrt[1+tan^2(x)] = 1/sqrt(1+p^2). c) cot(x-45)=1/tan(x-45). tan(x-45)=[tan(x)-tan(45)]/[1+tan(x)tan(45)] tan(x-45)=[tan(x)-1]/[1+tan(x)] Therefore, cot(x-45)=[1+tan(x)]/[tan(x)-1]=(1+p)/(p-1)

LR
Answered by Liam R. Maths tutor

16092 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the normal to the curve x^3 + 2(x^2)y = y^3 + 15 at the point (2, 1)


Prove the Quotient Rule using the Product Rule and Chain Rule


Solve the inequality x^2 > 3(x + 6)


Find, using calculus, the x coordinate of the turning point of the curve with equation y=e^3x cos 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning