Work out the value of 125^(-2/3)

Step 1: Write 125 as an exponent. Is there any number you can multiply by itself a few times to give you 125? The answer is 5 because 5 x 5 x 5= 5 x 25 = 125. Step 2: Since we know that 125=5^3, we can replace 125 in the equation by 5^3; (5^3)^(-2/3). Step 3: Use the power rule (a^b)^c = a^(bc). Applying this rule to our equation we obtain 5^(3-2/3). Step 4: Inside the brackets we have 3*(-2/3). We can break this down further by cancelling out the 3 in the numerator with the 3 in the denominator and we will be left with -2. Step 5: Now we can simplify 5^(3*-2/3) to 5^(-2) Step 6: Apply the negative exponent rule a^(-b)= 1/(a^b)---> 5^(-2) = 1/(5^2) = 1/25

AS
Answered by Araba S. Maths tutor

8211 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find an expression for the nth term of this sequence: 3 - 11 - 19 - 27 - 35 . The nth term of a different sequence is 2n^3 + 3. Write down the first 3 terms of this sequence.


n is an integer greater than 1. Prove algebraically that n^2-2-(n-2)^2 is always an even number


David travels from home to work at 30 mph. At the end of the day, he travels from work back home via the same route at 40 mph. What is his average speed while travelling? (Give your answer as a simplified fraction) (None-Calculator)


Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning