A curve has equation y=x^2 + (3k - 4)x + 13 and a line has equation y = 2x + k, where k is constant. Show that the x-coordinate of any point of intersection of the line and curve satisfies the equation: x^2 + 3(k - 2)x + 13 - k = 0

When we deal with points of interception, this immediately indicates that these two equations have to equal. Therefore, begin by equaling these two equations: x^2 + (3k - 4)x + 13 = 2x + k Bring all figures to one side, like the answer shows you to do, and open out any brackets, so we can later simplify: x^2 + 3kx - 4x + 13 - k - 2x = 0 Simplify: x^2 + 3kx - 6x - k + 13 = 0 The answer shows that you now need to simplify the x terms, hence resulting in the final equation: x^2 + 3(k - 2)x + 13 - k = 0

HW
Answered by Helena W. Maths tutor

11294 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y = 9x + 1/x, find the values of x such that dy/dx=0


A function f is defined by f(x) = x^3 - 3x^2 + 1. i) Write down f'(x). ii) Hence find the co-ordinates of the stationary points of the curve y=f(x).


Why is |z| = 1 a circle of radius one? (FP2)


The circle C has centre (3, 1) and passes through the point P(8, 3). (a) Find an equation for C. (b) Find an equation for the tangent to C at P, giving your answer in the form ax + by + c = 0 , where a, b and c are integers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences