A curve has equation y=x^2 + (3k - 4)x + 13 and a line has equation y = 2x + k, where k is constant. Show that the x-coordinate of any point of intersection of the line and curve satisfies the equation: x^2 + 3(k - 2)x + 13 - k = 0

When we deal with points of interception, this immediately indicates that these two equations have to equal. Therefore, begin by equaling these two equations: x^2 + (3k - 4)x + 13 = 2x + k Bring all figures to one side, like the answer shows you to do, and open out any brackets, so we can later simplify: x^2 + 3kx - 4x + 13 - k - 2x = 0 Simplify: x^2 + 3kx - 6x - k + 13 = 0 The answer shows that you now need to simplify the x terms, hence resulting in the final equation: x^2 + 3(k - 2)x + 13 - k = 0

HW
Answered by Helena W. Maths tutor

11511 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (1 + 4 * 7^0.5)/(5 + 2 * 7^0.5) in the form m + n * 7^0.5


Integrate 4/x^2


What's the best strategy when approaching a maths problem?


y = 4(x^3) + 7x ... Find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences