The point P lies on the curve C: y=f(x) where f(x)=x^3-2x^2+6x-12 and has x coordinate 1. Find the equation of the line normal to C which passes through P.

First we must find the y coordinate of the point P: We know the x-coordinate is x1=1 so the y coordinate must satisfy the equation y1=f(1) which gives y1=-7. So we now know P is at (1,-7).

We now need to find the gradient of C at P, we will call this a. We know a=f'(1)=5.

So the gradient, m, of the normal line at P will be: m=-1/a=-1/5.

So we know our normal line must have gradient m=-1/5 and must pass through P at (x1,y1)=(1,-7). Using the equation of straigt line y-y1=m(x-x1) gives our answer 5y+x+34=0.

KH
Answered by Kieran H. Maths tutor

9829 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A girl saves money over 200 weeks. She saves 5p in Week 1, 7p in Week 2, 9p in Week 3, and so on until Week 200. Her weekly savings form an arithmetic sequence. Find the amount she saves in Week 200. Calculate total savings over the 200 week period.


Find and classify all the stationary points of the function f(x) = x^3 - 3x^2 + 8


How to integrate e^(5x) between the limits 0 and 1.


Find dy/dx for y=5x^3−2x^2+7x−15


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences